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Abstract 
One-dimensional oscillating flow models are very useful for designing pulse tubes. They 

are simple to use, not computationally intensive, and the physical relationship between 
temperature, pressure and mass flow are easy to understand when used in conjunction with 
phasor diagrams. They do not possess, however, the ability to directly calculate thermal and 
momentum dif is ion in the direction transverse to the oscillating flow. To account for 
transverse effects, lumped parameter corrections, which are obtained though experiment, must be 
used. Or twodimensional solutions of the differential fluid equations must be obtained. 

A linear two-dimensional solution to the fluid equations has been obtained. The solution 
provides lumped parameter corrections for onedimensional models. The model accounts for heat 
transfer and shear flow between the gas and the tube. The complex Nusselt number and complex 
shear wall are useful in describing these corrections, with phase relations and amplitudes scaled 
with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional 
solution of the oscillating temperature and velocity and a one-dimensional solution for the same 
shows a scales linearly with Va for Va < 30. In this region a < 0.5, that is, the enthalpy flow 
calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. 
For Va > 250, a = 0.8, showing that diffusion is still important even when it is confined to a 
thing layer near the tube wall. 



Introduction 

A previous paper' that examined the scaling parameters for pulse tubes is based on a 
two-dimensional analysis of anelastic oscillating and compressible low Mach number flow of a 
gas contained in a tube of thin but finite wall thickness.2 Anelasitic flows are characterized by 
low Mach numbers and oscillating frequencies much less than system resonance frequency. This 
approximation is appropriate when acoustic and shock wave energies are negligible relative to the 
energy needed to compress and expand the bulk gas? For a tube radius and a tube wall thickness 
of O( lo-') and O( 1 O-*) smaller than the tube length, respectively, and for a tube with z axial 
coordinate scaled from 0 to 1, where the cold end is at z = 0, the scaling reduces the problem to 8 
dimensionless groups as shown in Table 1. The velocity phase angle at z = 0 and z = 1 is &-J 
which is scaled from 0 to 1 (corresponding to 0" to 360"). Three of the dimensionless groups are 
relevant to transverse (radial) diffusion: the Valensi number, Va; the Prandtl number, Pr; and the 
Fourier number of the tube wall, Fo. This paper explores the use of Va, Pr and Fo in providing 
lumped-parameter corrections of transverse diffusion for one-dimension models. 

Table 1 .  Dimensionless groups for oscillating compressible flow in the open tube of a pulse tube. 
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L V  
ratio of velocity at z = 0 to speed of 
sound 

squared ratio of tube inner radius to 
viscous diffusion length 
squared ratio of viscous to thermal 
diffusion length of gas 
squared ratio of tube wall thermal 
diffusion length to tube wall 
thickness 
ratio of velocity amplitude at z = 1 
to amplitude at z = 0 
velocity phase angle where Ug at 
z = O  leadsUL a t z = l  



Results of model 

How thermal diffusion affects bulk pressure and temperature phasors 

Figure 1 shows how thermal diffusion in the gas and tube wall affect the bulk pressure 
and temperature phasors, p1 and Tb, respectively, for U, = 1, Qu = -0.1; Fo = 0 and 100; and 
Pr = 0.7 and Va= 1, 30 and 100. The bulk temperature phasor is the integrated oscillating 
temperature profile over the tube radius; U, is the normalized velocity amplitude at z = 1 and p I  
is the bulk oscillating pressure. The condition for an isothermal wall boundary is Fo 1 (thick 
wall relative to thermal penetration). The condition for an adiabatic wall is Fo >> 1 (thin wall 
relative to thermal penetration). For Va>> 1, the tube inner radius is much larger than the 
thermal penetration distance in the gas. The shaded areas of the graphics in column 1 indicate 
the velocity phasors at locations in the tube between z = 0 and z = 1. 

Figure 1, column 1, shows that for an adiabatic wall condition (Fo = 100) temperature 
and pressure phasors are in-phase as would be expected. The thermal penetration distance 
within the tube wall is much larger than the tube wall itself, thus there is no thermal time lag in 
the tube wall. The tube wall temperature closely follows the oscillating temperature; likewise, 
the tube wall does little to constrain the oscillating gas temperature amplitude. This can clearly 
be seen from the oscillating gas radial temperature profiles given in column 2, where the curves 
designated with a “*” are for Fo = 100. As seen in column 2, the gas temperature is not 
“pinned” at T = 0 at r = 1 (the gadtube wall interface), but instead “floats”, thereby having less 
thermal diffusion effect. 

Often in one-dimensional models, it is assumed that adiabatic conditions on the gas are 
present (Fo >> 1). This condition is not likely achieved for real for pulse tubes, however. For 
example, a stainless steel tube with a wall thickness of 0.01 cm and thermal diasivity of 0.045 
cm2/sec fillled with gas oscillating at 30 Hz will have Fo = 2.4. 

A non-adiabatic condition in the gas can have profound effects on the gas temperature 
phasor. For the isothermal condition (Fo 3 0) the oscillating bulk temperature, Tb lags the 
oscillating pressure p I  by about 15”. This is illustrated in Fig. 1, column 1. More importantly, 
the temperature phasors are shifted out-of-phase relative to the velocity phasors (shaded area), 
This reduces enthalpy flow, since enthalpy flow depands on the cosine of the phase angle 
between velocity and temperature. Even at large Va = 100, where it might be expected that Tb 
(Fo 4 0) will approach Tb (Fo=lOO), there is still a significant detrimental phase shift of Tb 
(Fo 0) out of the shaded velocity phasor area, that is, T b  is never really in-phase with the gas 
velocities. The phasor diagrams given in column 1 would indicate that the open tube of most 
pulse tubes probably do not operate as ideal adiabatic systems. 

Column 2 of Fig. 1 shows the corresponding oscillating temperature for isothermal 
conditions (Fo + 0). Diffusion has a large effect on gas temperature for isothermal wall 
conditions. For small Va, this tends to dampen the temperature amplitude of the gas. As Va 
increases, the dampening of the gas temperature lessens. However, diffusion still constrains the 
the temperature oscillations near the wall. And since the area averaged bulk temperature scales 
with the square of the radius, this still constitues a large effect, even at large Va. 
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Figure 1. Column 1 shows the effect of Va and Fo on pressure, p r ,  and bulk 
temperature, Tb, phasors for oL = 1, @J = -0.1. Reference velocity phasor 
f i ~  along real axis with unit amplitude. Column 2 shows the temperature, 
TI('). Temperature profiles for Fo + 0 are pinned at r = 1, and profiles 
for Fo = 100 (identified with '*') float at r = 1. 

A useful relation quantifying the relation between bulk temperature and heat transfer to 
the tube wall is contained in the complex Nusselt number, Gu . 
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Kornhauser and Smith4 have examined this for basic pulse tube (BPT) systems (velocity at z = 1 
is zero) and rectangular coordinates. For orifice pulse tube (OPT) systems (velocity at z = 1 is 
non-zero) the complex Nusselt number is the the same as for BPT-systems. This is seen in Fig. 
2 where the fiu, is the same for both the BPT and OPT. The conclusion is that does not 
depend on f i L  and @TJ, thus the relation for fiu proposed by Kornhouaser for BPT-type 
systems with planar geometries can be used for similar OPT systems. At small PrVa, steady 
heat transfer correlations for low in a tube can be used since the dominance of  diffusion 
constrains h a n d  eo to being in phase (not shown in Fig. 2). At larger PrVa, deviations occur 
resulting in a phase shift of f iu  away from steady-state correlations. 
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Figure 2. Effect of PrVa and Fo on heat transfer amplitude and phase. Reference velocity 
phasor fio along real axis with unit amplitude. 
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Figure 3. Amplitude and phase of the complex Nusselt number, fiu(PrVa) = A 8, 
or complex wall shear factor, e(Va) = A e@. 

Figure 3 plots the amplitude and phase for ku for increasing PrVa. The plot can be used for 
corrections to one-dimensional models in the form fiu(PrVa) = ei@ for thermal modeling, and 
P(Va) = e@ to account for shear (friction). The usefulness of these relations can be seen from 

the one-dimensional equations for momentum transport, ~ & S C  = - k ? ~  + e ( v a ) f i ~ ~ ~ ,  and heat 
transport, i fosc = i j I +  h ( P r v a )  foSc . 

Enthlapy flow comparisons 

Enthalpy flux is given by the time averaged product of oscillating temperature and 
oscillating velocity. Enthalpy flux integrated over the tube cross-sectional area gives enthalpy 
flow. Since the solutions obtained from ref. 2 are two-dimensional, enthalpy transport reflecting 
both temperature and velocity diffusion can be easily calculated 

Figure 4, shows enthalpy transport for with 0~ = 1 @u = -0.1 and Fo + 0. The plots 
of zl(r)  in column 1 are shown for z = 0, 0.5 and 1. For the case of PrVa = 0.7 and Fo -+ 0, 
enthalpy flows in the reverse direction from z = 0.6 to z = 1. This is also shown in the 
corresponding plot of enthalpy flow vs. z in column 2. These plots show that operating with 
isothermal walls and small PrVa is not desirable. 

The pulse tube should be operated where the thermal diffusion region is confined to a 
thin layer near the tube wall. This can be seen in for PrVa=70 in column 1. Here, enthalpy flux 
is positive throughout the tube, and is not dampened by diffusion at the tube wall. Column 2 
shows how an adiabatic wall condition significantly increases enthalpy flow. The dashed-line is 
the near adiabatic condition of Fo = 100. Large PrVa and large Fo ideally is how a pulse OPT 
should be designed. 
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Figure 4. The effect of heat transfer on enthalpy flow, column 1 is the enthalpy 
flux; column 2 is the enthalpy flow as a function of z-position; 
Fo + 0 -; Fo = 100 - -. 
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Figure 5 .  Correction factor, a, as a function of Va, Pr = 0.7. The correction factor is the 
ratio between the two dimensional enthalpy flow calculations of ref. 2 and that 
calculated for one-dimensional flow of ref. 4. 

Figure 5 plots the correction factor, a, vs. Va with P ~ 0 . 7  for use in correcting one- 
dimensional calculations for transverse thermal and viscous diffusion. The correction factor is 
the ratio between the calculated enthalpy flow given by ref1 and the one-dimensional relation of 
ref 4. The plot of Fig. 5 is applicable for Pr = 0.5 to Pr = 0.9, and $u = 36" to 50". It is readily 
seen that pulse tubes should be designed towards large Va so as to reduce the effects of diffusion 
to a thin boundary layer near the tube wall. 



Discussion 

The calculated leading order quantities for pressure, temperature, velocity and heat 
transfer, the mean-steady velocity and enthalpy flux fields, and the mean-steady temperature 
give an insighthl understanding of the transport mechanisms for pulse tubes. 

The orifice pulse tube (OPT) is a cooling device and so it does not rely on diffision to 
obtain the appropriate phase angles between velocity and temperature. Phase angles are 
obtained through the velocity boundary conditions. The OPT should be operated where the 
thermal diffusion region is confined to a thin layer near the tube wall. This condition requires 
PrVa and Fo to both be large. The calculated plots of mean-steady velocity show that large Fo 
reduces mass streaming relative to Fo -+ 0. However, large Va tends to increase mass streaming. 

Operating at small PrVa and small Fo is detrimental to an OPT because heat transfer 
between the gas and the tube wall: i) reduces the oscillating temperature amplitude near the tube 
wall, and ii) creates unwanted phase angles between velocity and temperature. Both of these 
effects will tend to reduce enthalpy flow. There is a practical limitation to having both PrVa and 
Fo very large, as these requirements lead to a system that must contain high pressures with a 
large diameter, thin - walled tube for a given frequency. 

Heat transfer between the gas and the tube wall has an important effect on the pressure 
and temperature phasors. When there is significant heat transfer between the gas and tube wall, 
Fo = O( l), the pressure and temperature phasors move out-of-phase relative to each other for 
both the BPT and OPT. Calculations indicate this to be as much as 20“. This is important 
because 1D models often assume adiabatic conditions on the gas and so there is a presumption 
that the temperature is always in-phase with pressure. Most pulse tubes operate at Fo = O(1) 
which is closer to isothermal wall conditions. 

The complex Nusselt number is found to be independent of Fo, velocity amplitude ratio 
f i ~ ,  and velocity phase angle i j ~  at the tube ends. When written in the form fiu(PrVa) = A e’@, 
A is about 4 for PrVa < 3 and is linear with PrVa for PrVa > 25. The phase angle for PrVa < 0.5 
is # + -0.5 and for PrVa > 500, # + -0.38. A similar relation for the complex shear wall 
factor exists using only Va as the independent parameter. The complex Nusselt number and 
shear wall factor can be used for one-dimensional linear oscillating flow in a tube to account for 
radial heat transfer or shear at the tube wall. 
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